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Abstract. This paper presents two results. First it is shown how the discrete KP equation
arises from a superposition principle associated with the Darboux transformation of the two-
dimensional Toda system. Then Darboux transformations and binary Darboux transformations
are derived for the discrete KP equation and it is shown how these may be used to construct
exact solutions.

1. Introduction

In 1981, Hirota [2] introduced a discrete system which has since become one of the most
widely studied fully discrete integrable systems in three dimensions. This was originally
called adiscrete analogue of the generalized Toda equation(DAGTE) because it was shown
[2] that in one continuum limit it becomes the two-dimensional (A∞) Toda system [7]. It
was later shown [8] that this discrete system is the base member in a hierarchy which is
equivalent, after a change of coordinates, to the KP hierarchy and for this reason it has also
been called thediscrete KP equation(dKP), a name we will adopt here.

There are two main aims of this paper. First it will be shown how the dKP equation and
associated linear problem may be derived by considering Darboux transformations [6] for the
two-dimensional Toda lattice. This work exactly follows the approach developed recently
[9] in obtaining the discrete BKP equation (dBKP) from consideration of the Moutard
transformation.

Second, as a by-product of this derivation, we obtain Darboux transformations applicable
to the dKP equation. It is then shown that we may construct binary Darboux transformations
in an exactly similar way to the continuous case. Using the basic and the binary Darboux
transformations, classes of solutions of the dKP equation are obtained which generalize
some solutions obtained by Ohtaet al [11] using a direct approach.

2. The discrete KP equation and the two-dimensional Toda lattice

The DAGTE or dKP equation was introduced by Hirota [2] in the following form.
Consider a functionF = F(m1, m2, m3), and arbitrary constantsZ1, Z2, Z3 satisfying
Z1+ Z2+ Z3 = 0, then the dKP equation is

(Z1eDm1 + Z2eDm2 + Z3eDm3 )F · F = 0 (2.1)

whereDmi are Hirota derivatives, or, written more explicitly,

Z1F(m1+ 1, m2, m3)F (m1− 1, m2, m3)+ Z2F(m1, m2+ 1, m3)F (m1, m2− 1, m3)

+Z3F(m1, m2, m3+ 1)F (m1, m2, m3+ 1) = 0. (2.2)
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Introducing the change of independent variables

n1 = −m1+m2+m3

2
n2 = m1−m2+m3

2
n3 = m1+m2−m3

2
(2.3)

into (2.2) and writingF(m1, m2, m3) = τ(n1− 1
2, n2− 1

2, n3− 1
2) then (2.2) becomes

Z1τ(n1, n2+ 1, n3+ 1)τ (n1+ 1, n2, n3)+ Z2τ(n1+ 1, n2, n3+ 1)τ (n1, n2+ 1, n3)

+Z3τ(n1+ 1, n2+ 1, n3)τ (n1, n2, n3+ 1) = 0.

In [8, 11] for example, the parametersZi are given canonical values in terms of other
parametersa1, a2, a3 and the equation takes the form

(a2− a3)τ (n1, n2+ 1, n3+ 1)τ (n1+ 1, n2, n3)

+(a3− a1)τ (n1+ 1, n2, n3+ 1)τ (n1, n2+ 1, n3)

+(a1− a2)τ (n1+ 1, n2+ 1, n3)τ (n1, n2, n3+ 1) = 0. (2.4)

One may rescale the equation by means of the transformation

τ → Z
−n2n3
1 (−Z2)

−n1n3Z
−n1n2
3 τ (2.5)

to remove the parametersZi and we get

τ1τ23− τ2τ13+ τ3τ12 = 0 (2.6)

where here and below we use the notationXi = X|ni→ni+1 (‘incrementni ’) so that, for
example

τ1 := τ(n1+ 1, n2, n3)

τ13 := τ(n1+ 1, n2, n3+ 1).

We will refer to (2.6) as the dKP equation. Note that by using a rescaling of the form (2.5)
we may give the coefficients of the three terms in the dKP equation any value we wish.

The reason we choose to make the second term have coefficient−1 is to allow a succinct
presentation of the associated linear problem [1] which for (2.6) takes the form

φij = τiτj

ττij
(φj − φi) (16 i < j 6 3). (2.7)

It may be readily shown that (2.7) are compatible in the sense that(φ12)3 = (φ13)2 = (φ23)1
if and only if τ satisfies (2.6).

Next, we recall some results for the two-dimensional Toda lattice. Letz(n) = z(x, t, n)
be a function of three variables, one discrete (n) and two continuous (x, t). The system

zxt (n)− e−z(n−1) + 2e−z(n) − e−z(n+1) = 0 (2.8)

wheren ∈ Z was introduced by Mikhailov [7] and is known as thetwo-dimensional Toda
lattice. More generally, there is a system of the form

zxt (n)+
∑
m

Cnme−z(m) = 0 (2.9)

which is known to be integrable whenC is the Cartan matrix of any semi-simple or affine
Lie algebra. See in particular [3, 4]. For this reason (2.8) is called, more specifically, the
A∞ Toda lattice.

TheA∞ Toda lattice has Lax pair

φx(n) = v(n)φ(n)+ φ(n− 1)

φt (n) = u(n)φ(n+ 1)
(2.10)
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in which v(n + 1)− v(n) = zx(n) andu(n) = e−z(n). The coefficientsv(n) andu(n) may
be consistently parametrized in terms ofτ(n) = τ(x, t, n) as

v(n) =
(

log
τ(n− 1)

τ (n)

)
x

u(n) = τ(n+ 1)τ (n− 1)

τ (n)2
. (2.11)

Darboux transformations for (2.10) were found by Matveev [5, 6] and the reductions
of this to more general Toda lattices have been studied recently [10]. The basic Darboux
transformation is expressed in the following result.

Proposition 2.1.Given a non-zero solutionθ(n) of (2.10),

DTθ :φ(n)→ φ(n− 1)− θ(n− 1)

θ(n)
φ(n) τ(n)→ θ(n)τ(n) (2.12)

leaves (2.10) invariant.

We wish to use this Darboux transformation to introduce two discrete variablesn1, n2.
Roughly speaking, we think of a Darboux transformation DTθ i as giving rise to a change,
actually in this case adecrement, in the discrete variableni . To be able to use the more
convenient notation introduced above we relabel the existing discrete variablen as n3.
We will also use a modification of the subscript notation for increments to denote the
corresponding decrements:Xi ′ = X|ni→ni−1.

So now suppose that we have two eigenfunctionsθ1, θ2 of (2.10) then the Darboux
transformation (2.12) gives transformed quantities

φi = φ3′ − θ
i
3′

θ i
φ (2.13)

τ i = θ iτ (2.14)

for i = 1, 2. Further, after two Darboux transformations, determined byθ1 and then by
DTθ

1
θ2 = θ2

3′ − (θ1
3′/θ

1)θ2, we get

τ 12 = (θ1θ2
3′ − θ1

3′θ
2)τ. (2.15)

(2.15) using (2.14) gives

τ 12τ3′ = τ 1τ 2
3′ − τ 1

3′τ
2 (2.16)

which is a nonlinear superposition principle for solutions of (2.8) via the change of variables
(2.11). Similarly, (2.13) gives

φi = φ3′ − τ i3′τ

τ3′τ i
φ (i = 1, 2). (2.17)

Remark. Observe that the nonlinear superposition formula (2.16) is not invariant under
the interchange of superscripts 1 and 2, in factτ 12 = −τ 21, and hence does not represent
a permutability theorem in the usual sense. However, from (2.11) it is clear that this
change of sign is irrelevant to the solutions of (2.8) and so we may think of (2.16) as
a permutability theorem. This aspect has been discussed in more detail in [9] where a
very similar situation exists. In that paper, there is also a careful discussion of the way
in which we may legitimately convert the labels (superscripts) with respect to whichτ is
skew-symmetric into shifts on a lattice (subscripts) with respect to whichτ is necessarily
symmetric.
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It is now clear that if we wish to regard the upper indices as shifts on a lattice and
hence obtain (2.6), then these shifts should be interpreted asdecrements. If we do this then
we have

τ1′2′τ3′ = τ1′τ2′3′ − τ1′3′τ2′

which after the shiftni → ni + 1 for i = 1, 2, 3 and a rescaling to the form (2.5),
τ → (−1)n1n2, to change the sign of one term, gives (2.6). The same interpretation and
transformation of (2.17) gives

φi3 = τiτ3

ττi3
(φ3− φi) (i = 1, 2) (2.18)

which constitutes two of the three equations in the Dateet al [1] linear problem (2.7).

Remark.
(1) Since DTθ1 θ1 = 0, and a nonzero solution is needed for the definition of a Darboux

transformation we cannot obtain, for example,τ 11. Hence the interpretation of the action
of the Darboux transformation as a shift on a lattice only works in a local sense. That is,
it may be used to define the relationship of the values of the fieldτ at nearest-neighbour
sites only.

(2) If we had instead started with the adjoint linear problem and its Darboux
transformation, we would find that the action of the adjoint Darboux transformation may
be interpreted as an increment.

3. Darboux transformations

We will now derive Darboux transformations for the the linear system

φij = τiτj

ττij
(φj − φi) (16 i < j 6 3) (3.1)

which are compatible ((φ12)3 = (φ13)2 = (φ23)1) if and only if

τ1τ23− τ2τ13+ τ3τ23 = 0. (3.2)

It follows from (3.1) that

φi ′ − φj ′ = τi ′j ′τ

τi ′τj ′
φ. (3.3)

This form of the system is algebraically compatible (i.e. the three linear equations for
unknownsφ1′ , φ2′ , φ3′ has a solution) if and only the same condition (3.2) holds. Also,
from this form of the system we see that, for any two solutionsθ, φ,

θφ1′ − θ1′φ = θφ2′ − θ2′φ = θφ3′ − θ3′φ (3.4)

so that we may unambiguously define

C ′(θ, φ) = θk′φ − θφk′ (3.5)

wherek = 1, 2 or 3.
We may now obtain the Darboux transformation.

Proposition 3.1.Given any non-zero solutionθ of (3.1);

DTθ :φ→ C ′(θ, φ)
θ

τ → θτ (3.6)

leaves (3.1) invariant.
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As usual, we may obtain closed form expressions for the result ofN applications of the
above Darboux transformation. To do this we need to define the Casoratian ofN solutions.
Let θ = (θ1, . . . , θN)t be anN -vector solution of (3.1). From (3.3) it may be shown that,
the Casorati determinant (with back-shifts)

C ′(θ1, . . . , θN) = |θ,θi ′ , . . . ,θ i ′...i ′︸︷︷︸
N−1

| (16 i 6 3) (3.7)

may also be unambiguously defined and so we use the notation

C ′(θ1, . . . , θN) = |θ(0),θ(−1), . . . ,θ(1−N)| (3.8)

whereθ(n) denotes theN -vector (θ1, . . . , θN)t subject to the shiftni → ni + n, where
i = 1, 2 or 3, the same value being taken fori in each column in the determinant. Then
we have the following.

Proposition 3.2.GivenN solutionsθ1, . . . , θN of (3.1) such thatC ′(θ1, . . . , θN) 6= 0,

φ→ C ′(θ1, . . . , θN , φ)

C ′(θ1, . . . , θN)
τ → C ′(θ1, . . . , θN)τ (3.9)

leaves (3.1) invariant.

We may also find an adjoint linear representation for dKP. This can be derived from the
adjoint linear representation of the Toda lattice in the way that we did above. Alternatively,
we can define the adjoint directly for the discrete representation. We will see that in taking
this second approach one has to consider the linear equations written in an appropriate form
before taking the adjoint.

Note first that any solutionθ of (3.1) satisfies

(θ−1)i ′j ′ = (θτ )i ′(θτ )j ′

(θτ )(θτ )i ′j ′
((θ−1)j ′ − (θ−1)i ′). (3.10)

For the continuous variable Darboux transformation the reciprocal of the solution generating
the transformation is, for many classes of problem, a solution of the adjoint transformed
equation. We would like this to be the case here and use this to deduce the form of the
adjoint system.

Adjoint operators will be defined using the formal inner product for functionsa, b of
discrete variablesn1, n2, n3,

〈a, b〉 =
∑

n1,n2,n2∈Z
a(n1, n2, n3)b(n1, n2, n3). (3.11)

For example,

〈a, ub1〉 =
∑

n1,n2,n2∈Z
a(n1, n2, n3)u(n1, n2, n3)b(n1+ 1, n2, n3)

=
∑

m1,n2,n2∈Z
u(n1− 1, n2, n3)a(n1− 1, n2, n3)b(n1, n2, n3)

= 〈u1′a1′ , b〉
and so(u(·)1)† = u1′(·)1′ . If one defines operatorsLij from (3.1) by

Lij (τ )φ := τij τ

τiτj
φij + φi − φj = 0 (3.12)

then the corresponding adjoint system is

Lij (τ )†ψ := τi ′j ′τ

τi ′τj ′
ψi ′j ′ + ψi ′ − ψj ′ = 0. (3.13)
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The motivation for the choice ofLij was given by (3.10) which we now see has the
required form

Lij (θτ )†θ−1 = 0. (3.14)

Without this motivation, it would be natural to take the adjoint of (3.1) as it stands. The
resulting adjoint system is not compatible. Hence it is vital to write (3.1) in the form (3.12)
before taking the adjoint.

Hence we take the adjoint linear representation to be

ψi ′j ′ = τi ′τj ′

ττi ′j ′
(ψj ′ − ψi ′) (16 i < j 6 3) (3.15)

which are compatible if and only if (3.2) is satisfied. Here, given any pair of solutionsρ,ψ

of (3.15) we may unambiguously define

C(θ, φ) = ρψi − ρiψ (16 i 6 3) (3.16)

and then the adjoint Darboux transformation is as follows.

Proposition 3.3.Given any solutionρ of (3.15),

aDTρ :ψ → C(ρ,ψ)

ρ
τ → ρτ (3.17)

leaves (3.15) invariant.

TheN -fold adjoint Darboux transformation is expressed in terms of the Casoratian

C(ρ1, . . . , ρN) = |ρ(0),ρ(1), . . . ,ρ(N − 1)|
whereρ = (ρ1, . . . , ρN)t andρ(n) = ρ|ni→ni+n, the samei = 1, 2 or 3 be taken in all
columns.

Proposition 3.4.GivenN solutionsρ1, . . . , ρN of (3.15) such thatC(ρ1, . . . , ρN) 6= 0,

φ→ C(ρ1, . . . , ρN, φ)

C(ρ1, . . . , ρN)
τ → C ′(ρ1, . . . , ρN)τ (3.18)

leaves (3.15) invariant.

Solutions obtained by means of these Darboux transformations will be given in section 5.

4. Binary Darboux transformations

Inversion of the above Darboux transformations and then construction of the binary Darboux
transformations relies on the existence of a discrete potential, i.e. a quantityω defined (up
to an additive constant) by difference equations

1iω = αi (i = 1, 2, 3) (4.1)

in which 1i = (·)i − (·) is the forward-difference operator in discrete variableni and the
quantitiesαi satisfy the compatibility conditions1jαi = 1iα

j , for i < j .
The discrete potential to be used here is given below.

Proposition 4.1.Let Lij (τ )φ = Lij (τ )†ψ = 0 for someτ . Then there exists a discrete
potentialω = ω(φ,ψ) satisfying

1iω = ψφi (i = 1, 2, 3). (4.2)
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Now suppose that̃φ = C ′(θ, φ)/θ is the Darboux transform ofφ usingθ so that

Lij (θτ )φ̃ = 0 (4.3)

and we have seen, in (3.14), that

Lij (θτ )†θ−1 = 0. (4.4)

It follows that

1iθ
−1φ = θ−1φ̃i . (4.5)

By proposition 4.1, using (4.3) and (4.4), we get

φ = θω(φ̃, θ−1). (4.6)

This generalizes to give the inverse Darboux transformation and, in a similar way, the
inverse adjoint Darboux transformation.

Proposition 4.2.Given any solutionρ of (3.15),

iDTρ :φ→ ω(φ, ρ)

ρ
τ → ρτ (4.7)

leaves (3.1) invariant.

Proposition 4.3.Given any solutionθ of (3.1),

iaDTθ :ψ → ω(θ, ψ)

θ
τ → θτ (4.8)

leaves (3.15) invariant.

Note that

(DTθ ◦ iDT(θ
−1))φ = φ (iDT(θ

−1) ◦DTθ )φ = φ + constant

and

(aDTρ ◦ iaDT(ρ
−1))ψ = ψ (iaDT(ρ

−1) ◦ aDTρ)ψ = ψ + constant.

Binary Darboux transformations for the linear system and its adjoint are obtained by
composing the above-defined Darboux transformations: the binary Darboux transformation

BDTθ,ρ := iDTρ̃ ◦DTθ

and the binary adjoint Darboux transformation

aBDTθ,ρ := aDTρ̃ ◦ iaDTθ

whereρ̃ = iaDTθ ρ. This construction is illustrated in the following diagram.



8700 J J C Nimmo

Next we determine the explicit form of the binary Darboux transformations. First, we
have

ρ̃ = ω(θ, ρ)

θ
=: θ−1ω0

and so

φ̂ = BDTθ,ρ φ = ω(θ−1C ′(θ, φ), θ−1ω0)

θ−1ω0
.

Clearing fractions and taking theni-difference of both sides we get

1i(θ
−1ω0φ̂) = ω01i(θ

−1φ) = 1i(θ
−1ω0φ)− (1iω

0)θ−1
i φi .

Here we use a difference version of the Liebniz rule

1i(ab) = a(1ib)+ (1ia)bi .

So finally we get

1i(θ
−1ω0φ̂) = 1i(θ

−1ω0φ)− ρφi
and hence

φ̂ = φ − θ ω(φ, ρ)
ω(θ, ρ)

.

A similar, much simpler, calculation may be performed for the binary adjoint
transformation and then we have the following results.

Proposition 4.4.Let θ andρ satisfy (3.1) and (3.15) respectively then

BDTθ,ρ :φ→ φ − θ ω(φ, ρ)
ω(θ, ρ)

τ → ω(θ, ρ)τ (4.9)

aBDTθ,ρ :ψ → ψ − ρω(θ, ψ)
ω(θ, ρ)

τ → ω(θ, ρ)τ (4.10)

leave (3.1) and (3.15) respectively invariant.

These binary Darboux transformations may be iterated and the formulae describing the
N -fold transformations are given below.

Proposition 4.5.Let θ = (θ1, . . . , θN)t and ρ = (ρ1, . . . , ρN)t satisfy (3.1) and (3.15)
respectively then

φ→

∣∣∣∣φ ω(φ,ρt )
θ ω(θ,ρt )

∣∣∣∣
|ω(θ,ρt )| τ → |ω(θ,ρt )|τ (4.11)

ψ →

∣∣∣∣ ψρt

ω(θ, ψ) ω(θ,ρt )

∣∣∣∣
|ω(θ,ρt )| τ → |ω(θ,ρt )|τ (4.12)

leave (3.1) and (3.15) respectively invariant.



Darboux transformations and the discrete KP equation 8701

5. Explicit solutions obtained by Darboux transformations

Finally, we present explicit examples of the classes of solutions that may be obtained by
means of the Darboux transformations derived above. In its canonical form (2.4), the
vacuum solution of the dKP equation isτ = τ0 = 1. Thus, by virtue of the transformation
(2.5), the natural choice for the vacuum in the version of the equation (2.6) that we use is

τ0 =
3∏

i<j=1

(
ai − aj
aiaj

)ninj
. (5.1)

With this choice, the linear problem (2.7) reads

φij =
(
aiaj

ai − aj

)
(φj − φi) (i < j) (5.2)

and the basic eigenfunctions, depending on a single parameterp are found to be

φ(p) =
3∏
i=1

(
ai

aip − 1

)ni
. (5.3)

In a similar way the basic adjoint eigenfunctions, depending on parameterq, are

ψ(q) =
3∏
i=1

(
ai

aiq − 1

)−ni
(5.4)

and for these eigenfunction we may integrate (4.1) to obtain the potential

ω(φ,ψ) = c + pq

q − p
3∏
i=1

(
aiq − 1

aip − 1

)ni
(5.5)

wherec is a constant.
Given the above expression it is straightforward to write down the following explicit

solutions for (2.6)

τ = C ′(φ1, . . . , φN)τ0 (5.6)

whereφi = φ(pi) + αiφ(p′i ) whereφ(p) is given by (5.3) andpi, p′i andαi are arbitrary
constants;

τ = C(ψ1, . . . , ψN)τ0 (5.7)

whereψi = ψ(qi) + βiψ(q ′i ) whereψ(q) is given by (5.4) andqi, q ′i andβi are arbitrary
constants;

τ = det(ωi,j )τ0 (5.8)

whereωi,j is given by (5.5) withp = pi andq = qj andc = cij . These solutions are all
soliton-like in the sense that a field such as

U = τij τ

τiτj
(5.9)

contains coherent structures interacting elastically and also, in a continuum limit, each tends
to a soliton solution.

Further, by regarding the eigenfunctionsφ(p) as a generating function inp we obtain a
sequence of (essentially) polynomial expressions which satisfy the linear equations (5.2) and
may be regarded as discrete analogues of the Schur polynomials. The resulting solutions of
dKP are discrete analogues of the Schur function solutions of the KP hierarchy.
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We define polynomialsh(k)(n1, n2, n3) by

φ(p) =
3∏

j=1

(−aj )nj
∞∑
k=0

h(k)pk (5.10)

so that, for example,

h(0) = 1 h(1) =
3∑
i=1

aini and h(2) = 1
2

( 3∑
i=1

aini

)2

+ 1
2

3∑
i=1

a2
i ni

and in general theh(k) satisfy

(ai − aj )h(k)ij = aih(k)i − ajh(k)j .
In this way we obtain Casoratian-type polynomial solutions of the dKP equation. Using

an invariance of the formτ → ∏3
i=1 α

ni
i τ to remove an irrelevant multiplicative factor,

these may be written in their simplest form as

τ = C ′(h(i1), . . . , h(in))τ0

for nonnegative integersi1 < i2 < i3 < . . . < in.
Alternative representations of these solutions may also be found in the forms given in

(5.7) and (5.8).
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Appendix. Some proofs

This section contains proofs of some of the propositions in the main text. One each of the
basic and binary Darboux transformations is proved, the omitted proofs are very similar.

A.1. Proof of (3.2)

Let

F := C ′(θ1, . . . , θN) = |θ(0), . . . ,θ(1−N)|
G := C ′(θ1, . . . , θN , φ) = |θ+(0), . . . ,θ+(−N)|

whereθ+ = (θ1, . . . , θN , φ)t . To verify that (3.1) is invariant under (3.9) we must show
that

ττij

τiτj
FGij +GiFj −GjFi = 0 (i < j). (A1)

The basic property we use in proving this is the following formula, deduced from (3.3): for
n < 0,

θi (n) = θ(n+ 1)+
n+1∑
k=0

αkθi (k)
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whereαk are scalars. It follows that

Fi = |θi ,θ(0), . . . ,θ(2−N)|
Gi = |θ+i ,θ+(0), . . . ,θ+(1−N)|
Gij = −ττij

τiτj
|θ+i ,θ+j ,θ+(0), . . . ,θ+(2−N)|.

Substituting into the left-hand side of (A1) gives

|θ+i ,θ+j ,θ+(0), . . . ,θ+(2−N)||θ(0), . . . ,θ(1−N)|
−|θ+i ,θ+(0), . . . ,θ+(1−N)||θj ,θ(0), . . . ,θ(2−N)|
+|θ+j ,θ+(0), . . . ,θ+(1−N)||θi ,θ(0), . . . ,θ(2−N)|

which is equal to zero as it is the expansion of the vanishing determinant∣∣∣∣θ+i θ+j θ+(0) · · · θ+(2−N) 0 · · · 0 θ+(1−N)
θi θj 0 · · · 0 θ(0) · · · θ(2−N) θ(1−N)

∣∣∣∣ .
A.2. Proof of (4.5)

We use the following notation:ω = ω(φ,ρ) is anN -vector and� = ω(θ,ρt ) anN × N
matrix. Let

F = |�| G =
∣∣∣∣φ ωt

θ �

∣∣∣∣ .
Again we need to show that (A1) is satisfied. Now

Fi = |θiρt +�| = F −
∣∣∣∣ 0 ρt

θi �

∣∣∣∣
Gi =

∣∣∣∣ φi ωt

θi �

∣∣∣∣
Gij = τiτj

τij τ

[
Gj −Gi +

∣∣∣∣∣ 0 0 ρt

φj φi ωt

θj θi �

∣∣∣∣∣
]
.

Then the left-hand side of (A1) becomes∣∣∣∣∣ 0 0 ρt

φj φi ωt

θj θi �

∣∣∣∣∣ |�| −
∣∣∣∣ φi ωt

θi �

∣∣∣∣ ∣∣∣∣ 0 ρt

θj �

∣∣∣∣+ ∣∣∣∣φj ωt

θi �

∣∣∣∣ ∣∣∣∣ 0 ρt

θi �

∣∣∣∣
which vanishes because of a Jacobi identity.
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