IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Darboux transformations and the discrete KP equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 8693
(http://iopscience.iop.org/0305-4470/30/24/028)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:08

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger30 (1997) 8693-8704. Printed in the UK PIl: S0305-4470(97)84551-9

Darboux transformations and the discrete KP equation

J J C Nimmo
Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK

Received 28 May 1997, in final form 9 September 1997

Abstract. This paper presents two results. First it is shown how the discrete KP equation
arises from a superposition principle associated with the Darboux transformation of the two-
dimensional Toda system. Then Darboux transformations and binary Darboux transformations
are derived for the discrete KP equation and it is shown how these may be used to construct
exact solutions.

1. Introduction

In 1981, Hirota [2] introduced a discrete system which has since become one of the most
widely studied fully discrete integrable systems in three dimensions. This was originally
called adiscrete analogue of the generalized Toda equaf{l@AGTE) because it was shown

[2] that in one continuum limit it becomes the two-dimension&l.j Toda system [7]. It

was later shown [8] that this discrete system is the base member in a hierarchy which is
equivalent, after a change of coordinates, to the KP hierarchy and for this reason it has also
been called theliscrete KP equatior{dKP), a name we will adopt here.

There are two main aims of this paper. First it will be shown how the dKP equation and
associated linear problem may be derived by considering Darboux transformations [6] for the
two-dimensional Toda lattice. This work exactly follows the approach developed recently
[9] in obtaining the discrete BKP equation (dBKP) from consideration of the Moutard
transformation.

Second, as a by-product of this derivation, we obtain Darboux transformations applicable
to the dKP equation. It is then shown that we may construct binary Darboux transformations
in an exactly similar way to the continuous case. Using the basic and the binary Darboux
transformations, classes of solutions of the dKP equation are obtained which generalize
some solutions obtained by Ohgdal [11] using a direct approach.

2. The discrete KP equation and the two-dimensional Toda lattice

The DAGTE or dKP equation was introduced by Hirota [2] in the following form.
Consider a functionF = F(my, mp, m3), and arbitrary constant&i, Z,, Z3 satisfying
Z1+ Z» + Z3 = 0, then the dKP equation is

(Z1€Pm + 7,€Pm2 4 73eP3)F - F =0 (2.1)
where D,,, are Hirota derivatives, or, written more explicitly,
Z1F(my+ 1, mo,m3)F(my — 1, mo, m3) + ZoF (my, ma + 1, m3)F(my, ma — 1, ma)
+Z3F(my, mp, mz+ 1) F(my, mp,mz+ 1) =0. (2.2)
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Introducing the change of independent variables

—my+ mz +ms nz—ml_m2+m3 n3:m1+m2—m3
2 2 2

into (2.2) and writingF (my, mp, m3) = t(ny — 3, n2 — 3, n3 — 3) then (2.2) becomes

Zit(ny,np+ 1L ng+ Dt(n1 + 1, np, n3) + Zot(n1 + 1, np, n3g + v (n1, np + 1, n3)
+Z3t(ny+ 1, n2+ 1, n3)t(ng, no,n3+ 1) =0.
In [8, 11] for example, the parametef are given canonical values in terms of other
parameters, ap, az and the equation takes the form
(a2 — az)t(n1, n2 + 1, n3 + Dt (n1 + 1, na, n3)
+(az —ap)t(n1 + 1, nz, n3 + Dt (ny, nz2 + 1, n3)
+(ar —ax))t(ny+ 1, na + 1, n3)t(ng, no,n3+1) =0. (2.4)
One may rescale the equation by means of the transformation
T > Z{"(—Zp) Tz (2.5)
to remove the paramete#s and we get
T1T23 — T2Tiz + 13712 =0 (2.6)
where here and below we use the notat®on= X|,,_,,+1 (incrementr;’) so that, for
example
11 :=1(n1+ 1, n2,n3)
T13:=1(n1+ 1, no,n3+ 1).
We will refer to (2.6) as the dKP equation. Note that by using a rescaling of the form (2.5)
we may give the coefficients of the three terms in the dKP equation any value we wish.
The reason we choose to make the second term have coefficlgntto allow a succinct

presentation of the associated linear problem [1] which for (2.6) takes the form
T;Tj

$i="T—d)  (A<i<j<I). 2.7)

TT;j

It may be readily shown that (2.7) are compatible in the sensgdhg = (¢13)2 = (¢23)1
if and only if ¢ satisfies (2.6).

Next, we recall some results for the two-dimensional Toda latticeztet= z(x, ¢, n)
be a function of three variables, one discretg §nd two continuousx(, r). The system

th(n) _ e—z(n—l) + 2e—z(n) _ e—z(n+l) =0 (28)

wheren € Z was introduced by Mikhailov [7] and is known as ttweo-dimensional Toda
lattice. More generally, there is a system of the form

() + ) C™Me M =0 (2.9)

which is known to be integrable whet is the Cartan matrix of any semi-simple or affine
Lie algebra. See in particular [3, 4]. For this reason (2.8) is called, more specifically, the
A Toda lattice.

The A, Toda lattice has Lax pair

o(n) =v(m)p(n) +d(m — 1)

(2.10)
¢(n) =u()p(n +1)
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in which v(n + 1) — v(n) = z,(n) andu(n) = e *™. The coefficientw(n) andu(n) may
be consistently parametrized in termstwah) = t(x, t,n) as

t(n —1) tn+Dt(n—-1)

—_— un) = ——
tn) /. T(n)?

Darboux transformations for (2.10) were found by Matveev [5, 6] and the reductions

of this to more general Toda lattices have been studied recently [10]. The basic Darboux
transformation is expressed in the following result.

v(n) = (Iog (2.11)

Proposition 2.1.Given a non-zero solutiofi(n) of (2.10),
O(n—1)

0. Ay
DT".¢(n) > ¢(n — 1) o)

¢ (n) t(n) — 6(n)t(n) (2.12)

leaves (2.10) invariant.

We wish to use this Darboux transformation to introduce two discrete variables.
Roughly speaking, we think of a Darboux transformation’Dds giving rise to a change,
actually in this case decrementin the discrete variabla;. To be able to use the more
convenient notation introduced above we relabel the existing discrete variahtens.

We will also use a maodification of the subscript notation for increments to denote the
corresponding decrementX; = X1, ., —1.

So now suppose that we have two eigenfunctiéhs9? of (2.10) then the Darboux

transformation (2.12) gives transformed quantities

¢ =gy — 995;' ¢ (2.13)

=0t (2.14)
for i = 1,2. Further, after two Darboux transformations, determineddbynd then by
DT? 62 = 63 — (81/6162, we get

% = (01602 — 0367)1. (2.15)

(2.15) using (2.14) gives

%1y = 1113 — 1372 (2.16)

which is a nonlinear superposition principle for solutions of (2.8) via the change of variables
(2.11). Similarly, (2.13) gives

1
TyT

P =¢s— ——¢ (i=12). (2.17)

)/
137!

Remark. Observe that the nonlinear superposition formula (2.16) is not invariant under
the interchange of superscripts 1 and 2, in fatt= —?!, and hence does not represent

a permutability theorem in the usual sense. However, from (2.11) it is clear that this
change of sign is irrelevant to the solutions of (2.8) and so we may think of (2.16) as
a permutability theorem. This aspect has been discussed in more detail in [9] where a
very similar situation exists. In that paper, there is also a careful discussion of the way
in which we may legitimately convert the labels (superscripts) with respect to whish
skew-symmetric into shifts on a lattice (subscripts) with respect to whithnecessarily
symmetric.
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It is now clear that if we wish to regard the upper indices as shifts on a lattice and
hence obtain (2.6), then these shifts should be interpretdé@smentsif we do this then
we have

‘[1/21 ‘[3/ = ‘L’l/ ‘[2/3/ _ ‘L’l/3/ ‘L’2/

which after the shifts; — n; + 1 for i = 1,2,3 and a rescaling to the form (2.5),
T — (=1)""2, to change the sign of one term, gives (2.6). The same interpretation and
transformation of (2.17) gives

ba= C(ga—g) (=12 (2.18)
TT3

which constitutes two of the three equations in the Detal [1] linear problem (2.7).

Remark.

(1) Since DT 6, = 0, and a nonzero solution is needed for the definition of a Darboux
transformation we cannot obtain, for examptél. Hence the interpretation of the action
of the Darboux transformation as a shift on a lattice only works in a local sense. That is,
it may be used to define the relationship of the values of the fiedd nearest-neighbour
sites only.

(2) If we had instead started with the adjoint linear problem and its Darboux
transformation, we would find that the action of the adjoint Darboux transformation may
be interpreted as an increment.

3. Darboux transformations

We will now derive Darboux transformations for the the linear system
TTi . .

bij = #(¢j — &) 1l<i<j<I (3.1)
ij

which are compatible($12)3 = (¢13)2 = (¢23)1) if and only if

T1T23 — T2T13 + 73723 = 0. (3.2)
It follows from (3.1) that
T T
b — = (3.3)
Tir Ty

This form of the system is algebraically compatible (i.e. the three linear equations for
unknowns¢y, ¢, ¢z has a solution) if and only the same condition (3.2) holds. Also,
from this form of the system we see that, for any two solutiéng,

Opr — O0v¢p = O0dy — 2 = O3 — 03¢ (3.4)
so that we may unambiguously define
C'(0,¢) =0vp — O (3.5)

wherek = 1,2 or 3.
We may now obtain the Darboux transformation.

Proposition 3.1.Given any non-zero solutiof of (3.1);
c'©, ¢)
0

DT?:¢p — T — 0t (3.6)

leaves (3.1) invariant.
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As usual, we may obtain closed form expressions for the resuit applications of the
above Darboux transformation. To do this we need to define the CasoratMsaitions.
Let & = (6%, ...,0")" be anN-vector solution of (3.1). From (3.3) it may be shown that,
the Casorati determinant (with back-shifts)

c'®,....0%M=10,6;,....,0, | (1<i<d (3.7)
may also be unambiguously defined and so we use the notation

Cc't,....0") =10(0),0(-1),...,6(1— N)| (3.8)
where 8(n) denotes theV-vector (8%, ...,6")" subject to the shifu; — n; + n, where

i = 1,2 or 3, the same value being taken foin each column in the determinant. Then
we have the following.

Proposition 3.2.Given N solutionsf?, ..., " of (3.1) such thaC’(8%, ...,6") # 0,
PR c'6L,...,0N, ¢)
c@i,...,oN
leaves (3.1) invariant.

T C'0Y ..., 0 (3.9)

We may also find an adjoint linear representation for dKP. This can be derived from the
adjoint linear representation of the Toda lattice in the way that we did above. Alternatively,
we can define the adjoint directly for the discrete representation. We will see that in taking
this second approach one has to consider the linear equations written in an appropriate form
before taking the adjoint.

Note first that any solutiof of (3.1) satisfies

1) (07))
OT)(OD)y
For the continuous variable Darboux transformation the reciprocal of the solution generating
the transformation is, for many classes of problem, a solution of the adjoint transformed
equation. We would like this to be the case here and use this to deduce the form of the
adjoint system.

Adjoint operators will be defined using the formal inner product for functiens of
discrete variablegaq, no, ns,

{a,b) = Z a(ny, np, n3)b(ny, ny, n3). (3.12)

nl,nz,VleZ

Oy = (e T 1O Y (3.10)

For example,
(a,ubt) = )" a(ni, ng, na)u(ny, nz, na)b(n1 + 1, ny, n3)

ni,no,n2€”Z

Z I/t(n]_ - 17 nz, ng)a(nl - 17 nz, n3)b(nlﬂ nz, n3)

ma,np,np€Z

= (uyay, b)
and so(u(-)1)" = uy (-)1. If one defines operator’ from (3.1) by
T;;T

L(t)p = L ¢+ ¢ —¢; =0 (3.12)
T;Tj
then the corresponding adjoint system is
L@y = Ty 4 g =y =0, (3.13)

T Ty
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The motivation for the choice of/ was given by (3.10) which we now see has the
required form

Li@en)iet=0. (3.14)

Without this motivation, it would be natural to take the adjoint of (3.1) as it stands. The
resulting adjoint system is not compatible. Hence it is vital to write (3.1) in the form (3.12)
before taking the adjoint.
Hence we take the adjoint linear representation to be
Virjy = Wjr — Yir) 1<i<j<3 (3.15)

T Ty

TTj

which are compatible if and only if (3.2) is satisfied. Here, given any pair of solugioms
of (3.15) we may unambiguously define

C©O,p) =p¥i — oy 1<i<d (3.16)
and then the adjoint Darboux transformation is as follows.
Proposition 3.3.Given any solutiorp of (3.15),

Clp.¥)
I

aDT”: ¢y — T — pT (3.17)

leaves (3.15) invariant.
The N-fold adjoint Darboux transformation is expressed in terms of the Casoratian

wherep = (p, ..., pN) and p(n) = Ply—n+n» the same = 1,2 or 3 be taken in all
columns.

Proposition 3.4.Given N solutionsp?, ..., p¥ of (3.15) such thaC(p?, ..., p") #0,
Coh....pN, 9

C(pL, ..., pY)
leaves (3.15) invariant.

o — T— C'(pY ..., p")1T (3.18)

Solutions obtained by means of these Darboux transformations will be given in section 5.

4. Binary Darboux transformations

Inversion of the above Darboux transformations and then construction of the binary Darboux
transformations relies on the existence of a discrete potential, i.e. a quardiyined (up
to an additive constant) by difference equations

Aw = d (i=1273) (4.1)

in which A; = (-); — (+) is the forward-difference operator in discrete variabjeand the
quantitiesa’ satisfy the compatibility conditiona\ ;o' = A/, fori < j.
The discrete potential to be used here is given below.

Proposition 4.1.Let £ (t)¢ = LY (t)!y = 0 for somer. Then there exists a discrete
potentialw = w(¢, ¥) satisfying
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Now suppose thap = C’(6, ¢)/6 is the Darboux transform a usingé so that

L7@Ot)p =0 (4.3)
and we have seen, in (3.14), that

£ieniet =o. (4.4)
It follows that

A0 =071 (4.5)
By proposition 4.1, using (4.3) and (4.4), we get

¢ =0w(@, 071, (4.6)

This generalizes to give the inverse Darboux transformation and, in a similar way, the
inverse adjoint Darboux transformation.

Proposition 4.2.Given any solutiorno of (3.15),

(¢, p)
o)

iDT”: ¢ — T — pT 4.7)

leaves (3.1) invariant.
Proposition 4.3.Given any solutior of (3.1),

w(®, V)
0

iaDT?: ¢ — T — 0t (4.8)

leaves (3.15) invariant.
Note that
(DT? 0iDTY N)p = ¢ (DT® ™ o DT?)¢ = ¢ + constant
and
@DT? 0iaDT® Ny = (iaDT*® " 0 aDT)yr = ¥ + constant

Binary Darboux transformations for the linear system and its adjoint are obtained by
composing the above-defined Darboux transformations: the binary Darboux transformation

BDT?* :=iDT” o DT’
and the binary adjoint Darboux transformation
aBDT"* := aDT’ oiaDT’

whereg = iaDT? p. This construction is illustrated in the following diagram.

BDT?:P
T o~ T
=0

e
; ! T
fi ti ti

@@?_‘;amﬁ< : )
~N_ 7

aBDT?»
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Next we determine the explicit form of the binary Darboux transformations. First, we
have
0,
w(9 P) =010

ﬁ fr—
and so

w(@71C' (0, ¢), 0710
010 ’

Clearing fractions and taking the-difference of both sides we get

¢ =BDT"’"¢ =

Ai(0710%) = A (071¢) = A0 70%) — (Ai)6 M.
Here we use a difference version of the Liebniz rule

A;(ab) = a(Aib) + (Aja)b;.
So finally we get

A0 %) = Ai (6 0°¢) — po
and hence

w (¢, p)
w(,p)

A similar, much simpler, calculation may be performed for the binary adjoint
transformation and then we have the following results.

p=¢-6

Proposition 4.4.Let 6 and p satisfy (3.1) and (3.15) respectively then
LT

BDT??: ¢ — ¢ T — w®,p)T (4.9)
(0, p)
aBDT?: ¢ — o — pa)(@, ¥) T = w@, )t (4.10)
(0, p)

leave (3.1) and (3.15) respectively invariant.

These binary Darboux transformations may be iterated and the formulae describing the
N-fold transformations are given below.

Proposition 4.5.Let 8 = (©01,...,0Y) andp = (p',..., p")" satisfy (3.1) and (3.15)
respectively then

¢ @, p)
0 w(®,p) 0. o 4.11
& @ T — |w(0, pH)|T (4.11)
' vp' t
v w(@,v) w@,p) T — (@, ph)|t (4.12)
lw (8, p")]

leave (3.1) and (3.15) respectively invariant.
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5. Explicit solutions obtained by Darboux transformations

Finally, we present explicit examples of the classes of solutions that may be obtained by
means of the Darboux transformations derived above. In its canonical form (2.4), the
vacuum solution of the dKP equationis= 7o = 1. Thus, by virtue of the transformation

(2.5), the natural choice for the vacuum in the version of the equation (2.6) that we use is

3 nin;
a; — aj
To = ]‘[ ( a,-ajj) . (5.1)

i<j=1

With this choice, the linear problem (2.7) reads

¢ aa;
ij =
J a; —aj

and the basic eigenfunctions, depending on a single parameter found to be

3 ) n;
o(p) =[] <a'pa’_ 1) . (5.3)

i=1
In a similar way the basic adjoint eigenfunctions, depending on parametee

3 ) —n;
v@) =] <a,q“’_ 1) (5.4)

i=1
and for these eigenfunction we may integrate (4.1) to obtain the potential

3 n;
_ rq aig —1\"
w(p, ¥) _c+q—pg<a[p—l) (5.5)

wherec is a constant.
Given the above expression it is straightforward to write down the following explicit
solutions for (2.6)

T = C’((ﬁl, ey ¢N)‘L'0 (56)

where¢; = ¢(p;) + o;i¢p(p;) whereg(p) is given by (5.3) andy;, p; ande; are arbitrary
constants;

) (¢j — &) i< (5.2)

T=CW1,...,¥N)T0 (5.7)

wherey; = ¥ (q;) + Biv(q)) wherey (q) is given by (5.4) andy;, ¢/ and g; are arbitrary
constants;

T = det(a),-,_,-)ro (58)

wherew; ; is given by (5.5) withp = p; andg = ¢; andc = ¢;;. These solutions are all
soliton-like in the sense that a field such as
="t (5.9)
TTj
contains coherent structures interacting elastically and also, in a continuum limit, each tends
to a soliton solution.

Further, by regarding the eigenfunctiopép) as a generating function in we obtain a
sequence of (essentially) polynomial expressions which satisfy the linear equations (5.2) and
may be regarded as discrete analogues of the Schur polynomials. The resulting solutions of
dKP are discrete analogues of the Schur function solutions of the KP hierarchy.



8702 J J C Nimmo

We define polynomial&® (n1, ny, n3) by
3 00
o(p) = [(=apm > _n®p* (5.10)
j=1 k=0

so that, for example,

3 3 2 3
=1 hY = Zaini and h® = ;(Zaini) + % Zaizni
i=1 i=1 i=1

and in general tha® satisfy

k k k
(a,‘ — Cl_j)h}j) = a,‘]’lE ) _ ajhj(- ).

In this way we obtain Casoratian-type polynomial solutions of the dKP equation. Using
an invariance of the form — []>, /"t to remove an irrelevant multiplicative factor,

i

these may be written in their simplest form as
t=C G, ... )

for nonnegative integerg < i <iz < ... < i,.
Alternative representations of these solutions may also be found in the forms given in
(5.7) and (5.8).
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Appendix. Some proofs

This section contains proofs of some of the propositions in the main text. One each of the
basic and binary Darboux transformations is proved, the omitted proofs are very similar.

A.1. Proof of (3.2)

Let

F:=C'0%...,6")=10(0),...,0(1 — N)|

G:=C'Y....07, ¢)=107(0),...,0"(=N)|
where@t = (0%, ...,6", ¢)'. To verify that (3.1) is invariant under (3.9) we must show
that

TT;j . .

FG,]—FG,FJ—GJFIZO (l <]) (Al)
T;Tj

The basic property we use in proving this is the following formula, deduced from (3.3): for
n <0,
n+1
0i(n) = 6(n +1) + Y _ ‘i (k)
k=0
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wherea* are scalars. It follows that
G; = |0j, 610),...,07(1— N)|
T

Gij=——"216/,67,6%0).....0" 2~ N)|.

T;Tj !

Substituting into the left-hand side of (Al) gives
07.67.67(0),....672— N)[16(0).....6(1— N)|
—165,07(0),...,07(1— N)||6;,60(0),...,0(2— N)|
+107,07(0),...,07(1— N)||6;,0(0),...,0(2— N)|
which is equal to zero as it is the expansion of the vanishing determinant
0 0]* 6t© --- 6f2-N) 0 ... 0 0 (1-N)
0, 0 0 0 60 ..- 86(2—-N) 6(Q1—-N) |’
A.2. Proof of (4.5)

We use the following notatiornw = w(¢, p) is an N-vector and = w (6, p') anN x N
matrix. Let

_ _|P
F =19 G=|p ol
Again we need to show that (Al) is satisfied. Now
o p Al o 0 p
F=10ip+Ql=F ‘gi o
o ¢ W'
Gl—'ei Q
-
'L',"L'j 0 0 pt
Gij = Gi—Gi+|9 ¢ w
it 6, 6, QI]
Then the left-hand side of (A1) becomes
2
o 6 |sz|—‘¢" “’t‘ 0 P | ‘0 °
J i . . . .
6, 6, 6, |6, Q 6, Qlle

which vanishes because of a Jacobi identity.
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